全城7x24小时免费上门,您的生活服务帮手
电机效率虽高,但能量转化效率无法达到 100%,运行中总会产生能量损耗,主要包括铜损、铁损和机械损耗。
铜损是电流通过定子绕组(铜导线或铝导线)时因电阻产生的焦耳损耗。铁损是定子 / 转子铁芯在交变磁场中感应涡流。机械损耗主要是转子高速旋转时轴承的摩擦。这些能量损耗不会凭空消失,而是以热量形式积累在电机内部,因此电机必须配备专门的散热设计,防止温度过高。但电动机全力输出时,绕组承受几百安培的电流,其中电阻发热量不容忽视,为了避免电机过热烧毁,全电门满功率运行只能维持比较短的时间。
电机在高温环境下运行可能导致很多问题,包括但不限于:
1、性能下降与效率降低:电机温度过高会导致绕组电阻增大,铜损(焦耳损耗)增加,进而降低电机效率。同时,高温会影响电磁材料的磁导率,导致磁场强度下降,电机输出功率和扭矩衰减,加速性能减弱。
2、永磁体退磁风险:主流的电车发动机使用永磁同步电机,高温(尤其是超过磁钢耐温极限,如钕铁硼磁体通常耐温约150-200℃)会导致永磁体不可逆退磁,永久丧失磁性,造成电机动力下降乃至失效。
3、绝缘材料老化与短路风险:电机绕组的绝缘材料(如漆包线涂层、绝缘纸)在高温下会加速老化,绝缘性能下降,在震动冲击下导致某个位置绝缘层损坏,可能引发绕组短路、漏电,甚至引发火灾
4、系统可靠性降低:高温会影响电机轴承润滑脂的性能,导致润滑失效、轴承磨损加剧,长期则会影响续航能力和加快电池衰减。
新能源车发展初期,续航里程普遍较短(如300公里级),电机功率较低,发热量有限,散热方案以强制风冷或基础液冷为主。风冷很简单,就是在电机的外壳增加翅片,配合外置风扇或车辆行驶时的迎面气流带走热量,结构简单、成本低。而液冷是在电机外壳内设计液冷通道(水套),利用乙二醇水溶液循环带走热量,满足中等功率电机的散热需求。
随着电池与车身重量增加,以及用户对动力性能的追求(如5秒级破百成为常规指标),电机面临更大负荷,催生了更高效的散热方案 ——定子绕组直接液冷。区别于传统壳体液冷,该技术在定子绕组内部或端部设计专用液冷通道,使冷却液直接流经发热源(如扁线绕组空心导线),配合转子铁芯通风孔或导流结构,实现热量的精准高效导出。这个方案大幅提升散热效率,允许电机设计更高极限功率,或支持长时间高功率运行,成为高性能车型(如电动车加速标杆车型)的核心技术之一。
未来,随着电机功率密度持续提升,集成式热管理系统(如电机、电池、电控共享液冷回路)和智能温控策略(动态调节冷却液流量、风扇转速)将成为主流,同时材料升级(如耐高温绝缘材料、高导热陶瓷部件)和结构创新(轴向磁通电机设计)将进一步强化电机在高温环境下的稳定性与耐久性。
2025-05-22 07:05:52
2025-05-22 07:05:52
2025-05-22 07:05:52
2025-05-22 07:05:52
2025-05-22 07:05:52
2025-05-22 07:05:52
2025-05-22 07:05:52
2025-05-22 07:05:52
2025-05-22 07:05:52
2025-05-22 07:05:52